Orbital stability of periodic waves for the nonlinearSchrödinger equation
نویسندگان
چکیده
The nonlinear Schrödinger equation has several families of quasi-periodic travelling waves, each of which can be parametrized up to symmetries by two real numbers: the period of the modulus of the wave profile, and the variation of its phase over a period (Floquet exponent). In the defocusing case, we show that these travelling waves are orbitally stable within the class of solutions having the same period and the same Floquet exponent. This generalizes a previous work [13] where only small amplitude solutions were considered. A similar result is obtained in the focusing case, under a non-degeneracy condition which can be checked numerically. The proof relies on the general approach to orbital stability as developed by Grillakis, Shatah, and Strauss [16, 17], and requires a detailed analysis of the Hamiltonian system satisfied by the wave profile. Running head: Periodic waves in the NLS equation Corresponding author: Thierry Gallay, [email protected]
منابع مشابه
Orbital Stability for Periodic Standing Waves of the Klein-gordon-zakharov System and the Beam Equation
The existence and stability of spatially periodic waves (eφω, ψω) in the KleinGordon-Zakharov (KGZ) system are studied. We show a local existence result for low regularity initial data. Then, we construct a one-parameter family of periodic dnoidal waves for (KGZ) system when the period is bigger than √ 2π. We show that these waves are stable whenever an appropriate function satisfies the standa...
متن کاملExistence and Orbital Stability of Cnoidal Waves for a 1D Boussinesq Equation
We will study the existence and stability of periodic travelling-wave solutions of the nonlinear one-dimensional Boussinesq-type equation Φtt −Φxx + aΦxxxx − bΦxxtt +ΦtΦxx + 2ΦxΦxt = 0. Periodic travelling-wave solutions with an arbitrary fundamental period T0 will be built by using Jacobian elliptic functions. Stability (orbital) of these solutions by periodic disturbances with period T0 will ...
متن کاملStability of periodic travelling shallow-water waves determined by Newton’s equation
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems. Mathematics Subject Classification: 35B10, 35Q35, 35Q53, 35B25, 34C08, 34L40
متن کاملStability of small periodic waves for the nonlinear Schrödinger equation
The nonlinear Schrödinger equation possesses three distinct six-parameter families of complexvalued quasi-periodic travelling waves, one in the defocusing case and two in the focusing case. All these solutions have the property that their modulus is a periodic function of x−ct for some c ∈ R. In this paper we investigate the stability of the small amplitude travelling waves, both in the defocus...
متن کاملOn the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations
In this paper we generalize previous work on the spectral and orbital stability of waves for infinite-dimensional Hamiltonian systems to include those cases for which the skewsymmetric operator J is singular. We assume that J restricted to the orthogonal complement of its kernel has a bounded inverse. With this assumption and some further genericity conditions we (a) derive an unstable eigenval...
متن کامل